

INSTALLATION GUIDE

Parts

- 1 Reader and base plate assembly
- 1 Installation guide
- 2 Terminal connector terminal readers only

RKCL40, RPKCL40 & RKCLB40

- 4 M3.5 mm x 12 mm Phillips machine screw
- 4 #6-32 x .375" Phillips self-tapping machine screw
- 4 #6 x 1.5" Phillips sheet metal screw
- 3 #6-32 x .4375" Spanner security screw, anti-tamper (black)
- 3 #6-32 x .4375 Phillips security screw (black)
- 1 Mounting gasket

R10, RP10, R40, RK40, RP40 & RPK40

- 2 M3.5 mm x 12 mm Phillips machine screw
- 3 #6-32 x .375" Phillips self-tapping machine screw
- 2 #6 x 1.5" Phillips sheet metal screw
- 1 #6-32 x .375" Spanner security screw, anti-tamper
- Mounting gasket (optional, recommended for outdoor installation)

Recommended

- Cable, 6 conductor, 22 or 24 AWG [65 mm or 51 mm] Twisted Pair, Over-All Shield (Belden 3108A or equivalent) RS-485-FDX + power
- Cable, 4 conductor, 22 or 24 AWG [65 mm or 51 mm] Twisted Pair, Over-All Shield and UL approved (Belden 3107A, or equivalent) -RS-485-HDX + power
- · Cable, 6 to 9 conductor, 22 or 24 AWG [65 mm or 51 mm] Over-All Shield, (Alpha 1296C or equivalent) Wiegand + power
- DC power supply
- Metal or plastic double-gang junction box RPKCL40 / RPKCL40 / RKCLB40
- Metal or plastic single-gang junction box R10 / RP10 / R40 / RP40 / RK40 / RPK40
- Reader spacer when using metal junction boxes see pivCLASS How to Order Guide
- Security tool (for spanner security screw, anti-tamper) HID 04-0001-03

Specifications

pivCLASS Protocol

	BASE PART NUMBER	INPUT VOLTAGE (VDC)	CURRENT			OPERATING		UL REF
PRODUCT			Standby AVG ¹	Maximum AVG ²	PEAK ³	TEMPERATURE	CABLE LENGTH	NUMBER
R10-H	900NHR		60mA	100 4				R10Ex ₁ x ₂ x ₃
RP10-H	900PHR		75mA 100mA	200 4			RP10Ex ₁ x ₂ x ₃	
R40-H	920NHR		65mA	110 ma A	200mA	-30° to 150° F (-35° to 65° C)	RS-485 = 500 ft - 22 AWG (152 m) 300 ft - 24 AWG (91 m)	R40Ex ₁ x ₂ x ₃
RP40-H	920PHR		85mA	110mA				RP40Ex ₁ x ₂ x ₃
RK40-H	921NHR	12VDC	85mA	1054	222 4			RK40Ex ₁ x ₂ x ₃
RPK40-H	921PHR		95mA	125mA	220mA			RPK40Ex ₁ x ₂ x ₃
RKCL40-P	923NPR		1504 105	1054	185mA 250mA	-4° to 149° F (-20° to 65° C)		RKCL40Ex ₁ x ₂ x ₃
RPKCL40-P	923PPR		150mA	185MA				RPKCL40Ex ₁ x ₂ x ₃
RKCLB40-P	924NPR		165mA	215mA	275mA	14° to 122° F (-10° to 50° C)		RKCLB40Ex ₁ x ₂ x ₃

Standby AVG - RMS current draw without a card in the RF field.

UL Reference Number Deciphering

x, Reader Colors: K = Black

x₂ Wiring: N = Pigtail, T = Terminal x₃ Communications: N = No Module, R = RS-485

Maximum AVG - RMS current draw during continuous PIV card reads. Not evaluated by UL.

Peak - highest instantaneous current draw during RF communication.

Wiegand and OSDP Protocol

PRODUCT	BASE PART NUMBER	INPUT VOLTAGE (VDC)	CURRENT ¹			OPERATING		UL REF
			Standby AVG ²	Maximum AVG ³	PEAK ⁴	TEMPERATURE	CABLE LENGTH⁵	NUMBER
R10-H	900N		60mA	100 4	200		Communication Lines Wiegand = 500 ft - 22 AWG (152 m)	R10Ex ₁ x ₂ x ₃
RP10-H	900P		75mA	1100mA 200mA - 110mA 220mA				RP10Ex ₁ x ₂ x ₃
R40-H	920N	5-16VDC	65mA		-30° to 150° F	300 ft - 24 AWG (91 m)	R40Ex ₁ x ₂ x ₃	
RP40-H	920P	12VDC for RS-485	85mA			(-35° to 65° C)	RS-485 = Max. bus length 4000 ft - 24 AWG (1,219 m)	RP40Ex ₁ x ₂ x ₃
RK40-H	921N		85mA		220 4			RK40Ex ₁ x ₂ x ₃
RPK40-H	921P		95mA		220mA			RPK40Ex ₁ x ₂ x ₃
RKCL40-P	923N	10) (D.C	1504	105 4	050 4	-4° to 149° F (-20° to 65° C)	Max length between nodes: 1,640 ft - 24 AWG (500m)	RKCL40Ex ₁ x ₂ x ₃
RPKCL40-P	923P	12VDC	150mA	185mA	250mA			RPKCL40Ex ₁ x ₂ x ₃

Communication protocols other than Wiegand or Clock & Data require an additional hardware module which increases current by 30 mA.

- Standby AVG RMS current draw without a card in the RF field.
- Maximum AVG RMS current draw during continuous PIV card reads. Not evaluated by UL.
- Peak highest instantaneous current draw during RF communication.
- Wiegand Cable Lengths: 100 ft (30.5 m) 22 AWG @ 5 6.4VDC 500 ft (152 m) 22 AWG @ 6.5 16VDC

UL Reference Number Deciphering

 $\mathbf{x_1}$ Reader Colors: \mathbf{K} = Black $\mathbf{x_2}$ Wiring: \mathbf{N} = Pigtail \mathbf{T} = Terminal

 x_3 Communications: N = No Module, R = RS-485 (OSDP)

Installation

1 Mounting

Attach Backplate and Mounting Gasket to Junction Box.

Terminal Reader (Terminal block and module position varies)

ATTENTION Observe precautions for handling ELECTROSTATIC SENSITIVE DEVICES

Notes:

- Previous ICLASS readers had reversed R8-485 wiring (P2-7 & P2-6 - A & B). When upgrading to a ptvCLASS reader, ensure proper connections as defined below.
- Wiring the reader incorrectly may permanently damage the reader.
- For cable lengths greater than 200 ft. (61 m) or EMF interference, install 120Ω +/- 2Ω resistor across R8-485 termination ends.
- It is possible to reuse existing Wiegand wiring for OSDP, however, using simple stranded cable (typical of Wiegand access control readers) usually does not meet RS-485 twisted pair recommendations.

Pigtail	Terminal	Description	Pigtail	Terminal	Description
Yellow	P1-1	Beeper Input	Red / Green	P2-7	*GPIOT/OSDP (RS485-FDX/HDX-A)
Orange	P1-2	LED Input (GRN)	Tan	P2-6	*GPIO2/OSDP (RS485-FDX/HDX-B)
Black	P1-3	Ground (RTN)	Violet	P2-5	**Open Collector Output / Tamper
Red	P1-4	+VDC	White	P2-4	***Wiegand Data 1 / Clock
Drain	P1-5	Unused	Green	P2-3	***Wlegand Data 0 / Data
Brown	P1-6	LED Input (RED)	Pink	P2-2	*GPIO3 (RS485-FDX-Z)
Blue	P1-7	Hold Input	Gray	P2-1	*GPIO4 (RS485-FDX-Y)

^{*}RS-485 applicable for pivCLASS readers.

^{**}Tamper Output - When activated, output synchronizes to ground (default).

^{***}Dependent upon reader configuration. See the HTOG for Wiegand and Clock-in-Data configurations.

3 Attach to Backplate

Contactless Models

Contact Models

Default: Slide Reader Assembly towards the right to lock.

4 Power & Testing

Contactless Models

Contact Models

Note:

With a keypad reader operating as 26 bit emulation, upon power up you have 5 seconds to enter the Facility Code followed by #. If unsuccessful, the reader LED displays solid Red. Power-cycle the reader and retry entering the Facility Code.

The Facility Code needs to be manually entered as 3 digits (for example, if the Facility Code is 10, enter 0-1-0-#). SE readers only use Facility Codes between 1-255. There is no default Facility Code.

Once the Facility Code has been entered, the LED will display Violet and then to a final Red. Then power-cycle the reader.

When using a keypad, if there are 2 short beeps after entering your PIN, the reader does not have a Facility Code configured yet. In this event, an Administrator will need to power-cycle the reader and enter the Facility Code before the reader will accept your PIN.

Proper Usage

Ensure a good quality Contact:

- Do not press too hard
- Do not move during image acquisition
- Leave your finger on the sensor at least 2 seconds
- Do not slide or roll your finger across the sensor

Cleaning

For optimum performance, it is recommended that the user clean the bio-reader periodically.

The use of a dry cloth is recommended to clean the acquisition surface.

Caution: Acidic liquids, alcohol or abrasive materials are prohibited.

In order not to scratch the surface, remove all dust and residue with gentle movements.

B Reconfigure Reader Assembly

The following steps reconfigure the reader assembly to position the Contact reader component on the left side of the assembly.

- 1. Disassemble the reader.
 - Remove the Keypad reader from the backplate
 - Carefully unplug the ribbon cable from the module in the back of the Keypad reader. Caution: Do not pull on the ribbon cable as this may damage the connection to the connector.
 - Remove the Contact reader from the backplate
 - Gently pull the ribbon cable through the backplate

Contact reader

Keypad reader

- 2. Reassemble with the Contact reader on the left side of the assembly.
 - Rotate the backplate so that the large cutout for the power cable is on the left
 - Gently route the ribbon cable back through the backplate slots, as shown below
 - Plug the ribbon cable back into the module (back of Keypad reader) and ensure module is fully seated into the reader
 - Attach the Contact reader to the backplate (this must be installed first, as the Keypad Reader will fit slightly over the Contact reader)
 - Attach the Keypad reader to the backplate (power cable must be threaded through the large square cutout on the backplate)

C Credential Presentation Best Practices

To ensure a successful read of a PIV card:

- 1. Hold card between the thumb and index finger.
- 2. Present the card so that the index finger creates a spacing between the card and the reader face. Do not place the card flat on the reader.
- 3. Place the card parallel to the reader form factor. Do not angle to the right or left
- 4. Place the card parallel to the reader face. Do not angle the card up or down from the reader face.

